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Calculations are reported of the diffusion coefficient and frequency spectrum of the veloci- 
ty autocorrelation function for a model of liquid sodium using long-range oscillatory inter- 
ionic potentials. They are based on a theory of the associated memory function which 
employs a previously known expression for the timedependent pair distribution function. 
The latter is introduced to try to solve the difficult problem of describing the relative 
motion of two atoms, but the results are not consistent with the information obtained from 
molecular dynamics calculations. 

On the basis of a physical argument, a modified theory of the pair distribution is then 
employed and shown to produce results which are in much better agreement with those 
obtained from computer experiments. Some information is thereby obtained about the 
relative motion of atoms in a liquid. 

1. INTRODUCTION 

A means of calculating the velocity autocorrelation function in a liquid, from a 
theory of the associated memory function, was given in an earlier paper' (to be 
referred to as 1). The autocorrelation function is given by <Vi(t). Vj(o) ), where 
Vi(t) denotes the velocity of any atom in the liquid at time t ,  the brackets, a 
canonical ensemble average and the memory function K(t) is defined through 
the equation 

t 
!- $(t) t 
dt 0 

d~K( t -7 )  $ ( T )  = 0 

$( t )  being the normalised velocity autocorrelation function (Vi(t) . Vi(0) )/ 
tVi2(o) ) 
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134 M.I .  BARKER A N D  T. GASKELL 

In I an expression for K ( t )  was derived by making use of a previous result for 
the so-called time-dependent pair distribution function,* which essentially de- 
scribes the relative motion of two atoms in a fluid. By means of the latter the 
memory function was defined for a continuous though strongly repulsive poten- 
tial for all values of t and in particular it was argued that it might be usefully 
employed in a calculation of the diffusion coefficient in a liquid metal. The 
result is 

where p is the atomic density in the liquid,g(x) the radial distribution function, 
C: a modified self-correlation function given by 

kBT t 
m with a( f )  = J, d<f--)$(T) and m* = m12, the reduced mass in the relative 

motion of the two atoms. The diffusion coefficient, D, is obtained from the well 
kB T known result D = - Joodr $(f), which via Eq. ( 1.1) may be written 
m . O  

The memory function and diffusion coefficient have been investigated for 
liquid sodium using the long, range oscillatory potentials due to  Paskin and 
R a h m a t ~ . ~  They computed Ax), a(r) and the diffusion coefficient with these 
potentials, one of which produced results in reasonably good agreement with the 
corresponding experimental results for sodium. Finally we applied Eq. (1.2) to a 
6- 12 potential under conditions of temperature and density corresponding to 
argon close to the triple point and compared the result with those from a 
molecular dynamics calculation and previous theoretical investigations. 

It is found from these investigations that the computed values of D obtained 
by Paskin and Rahman cannot be reproduced, and a modification of Eq. (1.2) 
for the memory function is suggested which brings our results for the diffusion 
coefficient in much better agreement with the computer calculations. 

2. MEMORY FUNCTION AND FREQUENCY SPECTRUM FOR MODEL OF 
LIQUID SODIUM 

A feature of the liquid metal potentials used by Paskin and Rahman is the long 
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A THEORY OF A LIQUID METAL: I1 135 

range oscillatory (LRO) tail and they can be written in the form 
cp(r) = @ ~ ( r )  + @ L R O ( ~ ) ,  where 

@ ~ ( r )  = 0.78 exp (5.0724 - 1O*7863r/r0)ev 

and 

@LRO(r) = - A ( ~ ~ / r ) ~  cos { 7.8 12 (r/ro + 0) } 

ro = 3.72 and A and /I were taken as adjustable parameters, whilst those in the 
Born-Mayer repulsive part @R were those appropriate for sodium. Two sets of 
values for A and /I were selected to investigate the effect of the oscillatory 
part of the potential and were called LRO I ( A  = 0.048 eV, p =  0.5954) and 
LRO I1 (A  = 0.027 eV, /I = 0.5689). The potentials were truncated at 8.2 A as in 
the computer experiments. 

Changing the variable in Eq. (1.2) for the memory function enables us to 
write in it a form which involvesg’ rather than its derivative. This is convenient 
since we have available only tabulated values of the radial distribution function 
obtained from a graphical plot.3 It is also convenient to extract the asymptotic 
value of g‘’ from the expression since it makes no contribution to the integral, 
which is thus obtained as 

This expression has been evaluated for both LRO I and LRO I1 under conditions 
of density and temperature close to the melting point of sodium ( p  = 0.0243 
atoms A-3, T = 373°K) and the results are displayed as the upper curves in 
Figures 1 and 2 respectively. TIie general shape of the memory function in the two 
cases is very simdar, the main features being the rapid initial decay of K ( t )  
within a time I N 4 X lU13 s and the very much more slowly decreasing beha- 
viour at larger values of t, although K ( 0 )  for LRO I is greater than K ( 0 )  for 
LRO I1 by approximately a factor of 2. It soon became clear from the calcula- 
tions for these two cases (and also on the basis of corresponding results for argon 
where computer data for K(t) is available4) that the memory function is not 
decaying rapidly enough to be realistic, for values of t23 X 10-13s, with the 
result that the diffusion coefficient, being inversely proportional to Jomdt K( t ) ,  
is far too small. On examining the relative contributions to the memory func- 
tion from the core and tail of the potential it emerged that the effect of the 
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136 M. 1. B A R K E R  AND T. GASKELL 

potential core (the core diameter being defined as the value of r at which $(r) 
first falls to zero) is dominant and that the method exaggerates its contribution 
to K ( t )  for values of t23 x 1 0-13 s. 

A decoupling scheme similar to the one used in I t o  derive the memory 
function has been successfully employed in a calculation of the diffusion coeffi- 
cient of liquid argon,5 and the results in this case led us to re-examine the 
expression which we had used for the time-dependent pair distribution func- 
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FIGURE 1 
dependent pair distribution function. 

Memory function for LRO 1. Lower curve obtained with modified time- 
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A THEORY OF A LIQUID METAL: I1 137 

tion,’ within the context of Eq. (1.2). In the notation of I this correlation 
function, being essentially the probability that t = 0 two atoms will be a dis- 
tance r apart while at f =7 the separation of the same two atoms will be x,  is 
defined through the ensemble average 

t ( s )  

FIGURE2 
dependent pair distribution function. 

Memory function for LROII. Lower curve obtained with modified time- 
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138 M. 1. BARKER AND T. CASKELL 

and the result of Oppenheim and Bloom is given by 

On the basis of what might be termed a time-dependent superposition approxi- 
mation one attempts to evaluate (2.2) in the following way. Average over the 
initial configurations of the atoms giving pg(r), the probability density that the 
two atoms will be found a distance r apart. Then allow them to migrate to their 
fmal positions which means multiplying by G:(lr-xl,T), the probability that the 
atomic separation has increased by l r  - x l  in time 7. Thus far we have neglected 
the correlation in their final positions due to their mutual interaction and we 
attempt to correct this by further multiplying by g(x). Hence one obtains 

The Oppenheim and Bloom result might therefore be interpreted as a time- 
dependent superposition in the above sense but modified so that the boundary 
condition 

is correctly given. 
Now g(x) = exp(-U(x)lkgT), where U(x) is the effective potential between 

the two atoms in the presence of the surrounding medium of the other atoms. 
Therefore gYf(x)=exp(-U(x),ZkgT) and the modification of (2.4) which leads 
to the result of Oppenheim and Bloom is to effectively double the temperature 
of these two atoms as far as the structural part of the correlation function is 
concerned. Apart from the incorrect boundary condition at T =  0 arising from 
the approximation (2.4) it seems physically unreasonable to expect the instan- 
taneous atomic distribution about any one of our two atoms to be the equili- 
brium distribution g(x) and Eq. (2.3) represents a less well ordered distribution 
corresponding to  a higher effective temperature T* =2T. In its effect on g(x) this 
is tantamount to softening the atomic core and thus increasing the probability 
that the two atoms may be found a distance x apart. The potential derivative 
which occurs in Eq. (1.2) arises from the mutual force which two atoms exert on 
each other in the liquid, and softening the core in this way exaggerates the 
average force since the radial distribution function with the effective temperaturf 
decays less rapidly for values o f x s  the repulsive core of the potential. We there 
fore propose that to be consistent within this scheme we should modify the effec 
tive temperature of these two atoms in the dynamic part of the correlation functior 
Gf( lr-x1,7). The temperature dependence of this modified self correlation func 
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A THEORY OF A LIQUID METAL: I1 139 

tion arises through a(t) ==Tyd7(t-~)$(~)and the factor - 2 k ~ T  appears from 

the mean square speeds of the two atoms under consideration. The effective 
m o  m 

2 k ~ T *  
m temperature of these atoms is doubled by redefining a(t)=- Sod 7 

(t- ~ ) J , ( T )  where r* = 2T. The boundary condition given in Eq. (2.5) is of course 
unaffected by this modification. 

The effect of the latter proposal on the memory function is again displayed 
in Figures 1 and 2. According to the computations of Paskin and Rahman, LRO I1 
provided a significantly better fit to the experimentally determined structure 
and diffusion coefficient in liquid sodium and consequently it is the results for 
this potential, shown in Figure 2, which we have examined in more detail. The 
diffusion coefficient obtained from the molecular dynamics result is 
D = 5.8 X lB5 cm2 6' and this we have used in our calculation of the memory 
function through a( t )  which for large f has the limit a(t)-'4Dt -l C where Cis  a 
constant. The value of 0 3 . 7 5  X lUs cm2 f1 obtained from K ( t )  is satisfyingly 
consistent with this. The frequency spectrum is defined by 

1 
f ( w )  = 1 dt exp(-iwt) J, ( t )  

and it is easily shown that this can be written in the form 

K,(w) I f l  
f ( w )  = 

{ w  - Ks(w)i2 -t K,Z (4 
where 

K ,  (w)  = J dtK(t)sin wt 

and 

K ,  (w)  = 

0 

- 
dt K ( t )  cos wt 

0 

This expression has been evaluated and the normalised frequency spectrum is 
shown in Figure 3. Paskin6 has discussed the frequency spectrum of the velocity 
autocorrelation function obtained in molecular dynamics calculations with 
LRO 11. However the diffusion coefficient quoted in this latter reference 
(D  = 4.9 cm2 s-' ) is not that given in the earlier report of the molecular dynamics 
calculations and used in our work, so that a strict comparison of the two results 
is not possible. Nevertheless the general features of the two frequency spectra 
are clearly very similar. The height of the peak in the two cases agrees closely, 
although its position as shown in Figure 3 occurs at a smaller value of 
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140 M.  1. BARKER AND T. CASKELL 

w e l . 1  X l O I 3  s-' compared to the molecular dynamics result of 

For LRO I a value of D = 1.9 X lU5 cm2 s-' was used in the asymptotic form 
of a(?) employed in C:( Ir-xl ,T). The calculated value of the diffusion coeffi- 
cient from the memory function in this case (0-3.1 X l U 5  cm2 s-') does not 
show the consistency obtained with potential 11. Again it should be added that 
the value of D later quoted by Paskin is again different (2.3 X lU5 cm2 s-') so 
that there may be some inconsistency in the structure data we have used and the 

w-1.4x 1013 s-l. 
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FIGURE 3 Frequency spectrum for LRO 11 (025.75  X IW' cm2 5 ' ) .  
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.4 THEORY OF A LIQUID METAL: I1 141 

dynamics as contained in G:. This could have more significance in the case of 
LRO I because the amplitudes of the oscillations in this potential are larger, 
which might tend to make any inconsistency have more serious consequences. 

Finally it must be added that the accuracy of our calculations is difficult to 
assess, since our data for a(t) and the radial distribution function were read from 
a graphical plot given by Paskin and Rahman. The evaluation of the contribution 
to the memory function from the core region of the potential in Eq. (2.1) is 
particularly sensitive, because it involves the derivative of a rapidly increasing 
function. We believe however that the general features of the results are correct. 

3. MEMORY FUNCTION FOR MODEL OF LIQUID ARGON 

In this section we briefly explore the application of our equation for the memo- 
ry function to a model of liquid argon. The interatomic potential we have used is 
a 6- 12 potential given by 

with E l k  = 1193°K and a = 3.405 A, under conditions of temperature and 

density which closely resemble those near the triple point of argon ( p  = 0.024 
atoms k3, T =  86.5"K). Our input data for the radial distribution function is 
that due to Verlet,' whilst the data for ~ ( t )  has been obtained from some 
computer results by Nijboer and Rahman.' Again, as shown in Figure 4, unless we 
use the effective temperature Tc = 2T in the modified self correlation function 
the memory function does not decay quickly enough to be realistic. With the 
modification to the temperature the behaviour for larger values of t is corrected. 
The diffusion coefficient consistent with the data for a(t) which we have used in 
the calculation is 1.88 X lUs cmz s-' whilst that obtained from the lower curve 
in Figure 4 is =1.41 X lU5 cm2 s-' . 

The results in this case certainly do  not improve those of an earlier calcula- 
tion of the diffusion in argon by Barker and Gaskell.' In fact the theory in the 
latter reference seems to be preferable in t h s  case, because their treatment of 
the problem of correlating the motion of two interacting atoms has a simple 
physical interpretation, and the extremely difficult derivation of a time-depen- 
dent pair distribution function is avoided. Although the result is not shown we 
have calculated the frequency spectrum associated with the memory function in 
Figure 4. Just as with the diffusion coefficient it compares rather less favourably 
with the molecular dynamics result than that previously derived by Barker and 
Gaskell. 
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142 M. 1. BARKER AND T. CASKELL 

It is not strictly necessary in any of these calculations to have prior informa- 
tion about the function a(t).  In fact it might be argued that instead of using a 
computer result for a([) i t  would be more satisfactory to use a self-consistent 
value. However since a(t)  is obtained from an integration of $( t )  the detailed 
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FIGURE 4 
fied timedependent pair distribution function. 

Memory function for model of liquid argon. Lower curve obtained with modi 
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A THEORY OF A LIQUID METAL: I1  143 

shape of the latter is not very significant and this procedure would probably not 
alter to any great extend the features of our results for the memory function. 

4. DISCUSSION 

We have investigated the expression for the memory function given in Eq. (1.2), 
which incorporates a theory of the time-dependent pair distribution function, 
and found that the results are not consistent with the information obtained from 
molecular dynamics computations. The modification to the time-dependent cor- 
relation function which we suggest, within the context of our theory of the 
memory function, is based on what might be roughly called a time-dependent 
superposition approximation and one would expect it to be most appropriate for 
large values off.  It is interesting to note that the application of the Oppenheim and 
Bloom result, given in Eq. (2 .3 )  with their asymptotic form of a(t )  = 2Df, was 
not as successful in a theory of nuclear relaxation timesg in gases and liquids as 
one employing the ideal gas form of a(t) = kTt2 /m.  With the latter form for a(t) 
the Oppenheim and Bloom result is correct for sufficiently small values of f9, 
but a ( [ )  = kTtZ / m  is not an accurate representation at the liquid densities used 
here beyond t=l X lUI3 s. In the present problem its use would be closely 
related to the linear trajectory approximation but seems to have very little 
theoretical justification. If employed for the two liquid metal potentials it pro- 
duces results for the diffusion coefficient which are within 20% of those given 
earlier, although the detailed shape of the memory functions is different. Our 

suggested modification for a(t) =- 2 k i T * L b < r - T ) + ( T )  does not reproduce the 

correct result for a([)= kTt2/m at small t and should be regarded as an attempt 
to obtain a more accurate result for K ( t )  at large t whilst still maintaining the 
correct boundary condition for the memory function at f = 0. We suggest there- 
fore that the successful introduction of the effective temperature F, and the 
fact that similar results for the diffusion coefficient can be obtained with the 
ideal gas form of a(t) ,  is a very good indication thar a more random description 
of the dynamics via C,* is consistent with the description of the static correla- 
tions by the square root of the radial distribution function. This might be 
further tested through application of the time-dependent pair distribution func- 
tion in the calculation of nuclear quadrupole relaxation times in liquid metals. lo 
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